By Anton Bielousov [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

This article was originally published on Phys.org


“Sea level rise and extreme weather events have become harsh realities for those living along the world’s coasts. The record-breaking hurricanes of the past decade in the United States have led to staggering tolls on coastal infrastructure and communities, leading many local governments to consider the benefits of natural coastal barriers.

In a landmark study titled “Warming accelerates  expansion and surface elevation gain in a subtropical wetland” a team of Villanova University biologists have documented that  in the southeastern United States are responding positively to rising temperatures both in their growth and in their ability to build soil to keep pace with sea level rise.

Published August 29 in the British Ecological Society’s Journal of Ecology, the study’s results are a ray of sunshine in the  forecast. Members of the research team included Glenn A. Coldren, J. Adam Langley, and Samantha Chapman, from Villanova University’s Department of Biology, Villanova, PA and Ilka C. Feller of The Animal-Plant Interaction Lab, Smithsonian Environmental Research Center, in Edgewater.

The Villanova research team’s two-year experiment, funded by grants from the National Aeronautics and Space Administration (NASA), was performed at the Kennedy Space Center (KSC) within the Merritt Island National Wildlife Refuge (MINWR) on Merritt Island. The KSC was an ideal location to conduct the research being situated at the intersection of two wetland biomes, salt marshes and mangroves. The implications for the KSC are serious since coastal wetlands and sand dunes help protect NASA’s $5.6 billion low-lying infrastructure against rising seas.

The large-scale warming experiment was conducted in place in the MINWR using large passive warming chambers to increase both marsh and mangrove ecosystem air temperatures. The Villanova researchers found that experimental warming both doubled plant height and accelerated the transition from marsh to mangrove…”

Read on at: Phys.org