This paper was originally published in PNAS


“Achieving inclusive, green development is crucial to China and the world. Over the past century, great increases in agricultural production have been achieved at the expense of other ecosystem benefits, such as flood control, water purification, climate stabilization, and biodiversity conservation. We report on an application of China’s new “Ecological Development Strategy,” which aims to break these trade-offs and be scaled nationwide. Focusing on Hainan Island, where rubber production has driven loss of natural forest, we identified a two-pronged strategy that would eliminate these trade-offs, simultaneously diversifying and enhancing product provision, rural incomes, and many other ecosystem benefits. This win−win approach has broad applicability in the plantation regions in China, across South and Southeast Asia, and beyond.

Abstract: A major challenge in transforming development to inclusive, sustainable pathways is the pervasive and persistent trade-off between provisioning services (e.g., agricultural production) on the one hand and regulating services (e.g., water purification, flood control) and biodiversity conservation on the other. We report on an application of China’s new Ecological Development Strategy, now being formally tested and refined for subsequent scaling nationwide, which aims to mitigate and even eliminate these trade-offs. Our focus is the Ecosystem Function Conservation Area of Hainan Island, a rural, tropical region where expansion of rubber plantations has driven extensive loss of natural forest and its vital benefits to people.

We explored both the biophysical and the socioeconomic options for achieving simultaneous improvements in product provision, regulating services, biodiversity, and livelihoods. We quantified historic trade-offs between rubber production and vital regulating services, finding that, over the past 20 y (1998–2017), there was a 72.2% increase in rubber plantation area, leading to decreases in soil retention (17.8%), water purification [reduced retention of nitrogen (56.3%) and phosphorus (27.4%)], flood mitigation (21.9%), carbon sequestration (1.7%), and habitat for biodiversity (6.9%). Using scenario analyses, we identified a two-pronged strategy that would significantly reduce these trade-offs, enhancing regulating services and biodiversity, while simultaneously diversifying and increasing product provision and improving livelihoods. This general approach to analyzing product provision, regulating services, biodiversity, and livelihoods has applicability in rural landscapes across China, South and Southeast Asia, and beyond…”

Read on and access the full paper at: PNAS.