This paper was originally published in Frontiers in Plant Science.


Abstract Food web theory predicts that current global declines in marine predators could generate unwanted consequences for many marine ecosystems. In coastal plant communities (kelp, seagrass, mangroves, and salt marsh), several studies have documented the far-reaching effects of changing predator populations. Across coastal ecosystems, the loss of marine predators appears to negatively affect coastal plant communities and the ecosystem services they provide.

Here, we discuss some of the documented and suspected effects of predators on coastal protection, carbon sequestration, and the stability and resilience of coastal plant communities. In addition, we present a meta-analysis to assess the strength and direction of trophic cascades in kelp forests, seagrasses, salt marshes, and mangroves. We demonstrate that the strength and direction of trophic cascades varied across ecosystem types, with predators having a large positive effect on plants in salt marshes, a moderate positive effect on plants in kelp and mangroves, and no effect on plants in seagrasses.

Our analysis also identified that there is a paucity of literature on trophic cascades for all four coastal plant systems, but especially seagrass and mangroves. Our results demonstrate the crucial role of predators in maintaining coastal ecosystem services, but also highlights the need for further research before large-scale generalizations about the prevalence, direction, and strength of trophic cascade in coastal plant communities can be made…”

Read on and access the full paper at: Frontiers in Plant Science.